Analysis and Modeling of Yield, CO2 Emissions, and Energy for Basil Production in Iran using Artificial Neural Networks
نویسندگان
چکیده مقاله:
The present study attempts to investigate the potential relationship between input energies, performance production of greenhouse basil, and greenhouse gases emitted from this product. The data were collected from 24 greenhouses using a questionnaire and verbal interaction with farmers. Results of the study showed that the total input energy and total output energy for basil production were 119,852.9 MJ/ha and 61,040 MJ/ha, respectively. The highest rate of energy consumption was related to electricity (52,200 MJ/ha), followed by plastic (23,220 MJ/ha) and chemical fertilizers (13,894 MJ/ha). The energy and productivity indices were estimated at 0.45 and 0.21, respectively, which indicated that the efficiency of energy in the agricultural sector was low. In addition, it was found that the pure energy index and total greenhouse gases emitted from basil production were equal to -722,706.9 and 9,595.6 kg (CO2), respectively. The highest emission of greenhouse gases was attributed to electricity (2,216 kg/CO2). Results of modeling proved that artificial neural networks can predict basil performance and CO2 emissions with a high degree of accuracy (R2=0.99 and MSE= 0.00023).
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
An Analysis of Energy Use, CO2 Emissions and Relation Between Energy Inputs and Yield of Hazelnut Production in Guilan Province of Iran
The objectives of this research were to investigate influences of energy inputs and energy forms on output levels and evaluation of CO2 emissions for hazelnut production in Guilan province of Iran. Moreover, the sensitivity analysis was done by marginal physical productivity (MPP) method for energy inputs and energy using linear regression. Initial data were collected from 120 orchar...
متن کاملAn Analysis of Energy Use, CO2 Emissions and Relation Between Energy Inputs and Yield of Hazelnut Production in Guilan Province of Iran
The objectives of this research were to investigate influences of energy inputs and energy forms on output levels and evaluation of CO2 emissions for hazelnut production in Guilan province of Iran. Moreover, the sensitivity analysis was done by marginal physical productivity (MPP) method for energy inputs and energy using linear regression. Initial data were collected from 120 orchar...
متن کاملNew Method of Artificial Neural Networks (ANN) in Modeling Broiler Production Energy Index in Alborz Province
During the past few years, modeling in agriculture has attracted considerable attention. New modeling methods including neural networks are employed in various industries, and it is necessary that their use in agriculture be also considered. This research addressed the trend of energy use in broiler farms in Alborz Province and sought to model the trend of energy consumption and production in t...
متن کاملModeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...
متن کاملModeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 1
صفحات 47- 58
تاریخ انتشار 2017-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023